Shortcut to Mycothiol Analogues
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The synthesis of a simplified thioglycosidic analogue (2) of mycothiol (1) is described. Evaluation of 2 against mycothiol S-conjugate amidase
from Mycobacterium tuberculosis reveals good specific activity (7500 nmol min—! mg-protein=?, vs 14 200 for 1), indicating that 2 can serve

as a starting point for antitubercular drug design.

Mycothiol* (1) is the major low molecular weight thiol found
in actinomycetes, includinilycobacterium tuberculosfs®

pyranosyl)e-myo-inositol3, first by deacetylation to give
4.8 and then acylation with-cysteine under the influence

It is thought to protect these organisms against oxidative of a ligasé’-'8to provide5. A transacetylasé'® convertss

stres§10 and function in the removal of exogenous elec-
trophilic agents!~15 The biosynthesis ofl (Scheme 1)
proceeds by way of B(2'-acetamido-2'-deoxy-a-gluco-
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to 1. Two further pathways involvindg have been elucidated
(Scheme 1). A reducta%e regenerated from the corre-
sponding disulfide, mycothionég), thus maintaining the
reducing intracellular environment. Upon reactioriLofith
electrophiles E, the resulting conjugat& is cleaved by
mycothiol S-conjugate amidadé®into 4 and anN-acetyl-
cysteine adducB that is exported from the cell.
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Drug-resistant tuberculosis now threatens a large portion
of earth’s populatiod? and the development of new treat-
ments for tuberculosis infection has become a nattéaad
internationad? priority. The disruption of enzymatic pathways
of mycothiol biosynthesis and/or mycothiol-based detoxifi-



Scheme 1. Enzyme-Mediated Mycothiol Pathways
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version of the inositol ring could be used as a component of
inhibitors. We recently found that a variety ofGIcNAc
thioconjugates can be prepared stereoselectively and in good
yield by S-derivatization of amx-GIcNAc mercaptai®?®
Thioglycosides are generally more resistant to degradation
by glycosidases tha®-glycosideg®-28 so this approach to
inhibitor design combines several possible advantages.
Commercially available 2-acetamido-2-deoxy+#jluco-
pyranose tetraacetat®, (Scheme 2) was treated with Lawes-

Scheme 2. Synthesis of Simplified Mycothiol Analogu2
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cation could leaveM. tuberculosisvulnerable to drugs, oH o
oxygen, and other stress factors. The enzymes shown in o o o 1. pyridine
Scheme 1 accept substrates or produce products that are Ho 7A % 2. Sephadex )
N-acylated 1-O(2'-amino-2'-deoxy-o-glucopyranosyl)p- Ox N SCeH O/ NsceH,,  100% from 14
myo-inositols. For this reason, compounds based on the ;\NHCO ;\+
GlcN—Ins substructure that additionally bear groups on N 2tBu Wk NHs )
that resemble those of the respective transition states are A% ¢ CF3CO,
15

potential inhibitors for any one, or more than one, of these
enzymes. In previous synthetic studies brand related
compounds$;'>1723the preparation of a protectastmyo-
inositol glycosylation acceptor has required several steps and®
a resolution, and both the inositel-glycosylation and
N-acylation steps have been problematic. Some of these
synthetic difficulties could be dodged if a stripped-down
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on’s reagent as described previol&l§f and the resulting
thiazoline 10 was then hydrolyzed to the acetamido mer-
captanl12* Reaction ofl1 with cyclohexene under condi-
tions for free radical addition of anomeric mercaptans to
alkenes [chloroform as a cosolvent, azobis(isobutyronitrile)
as a radical initiatofp afforded the cyclohexyl thioglycoside
12 with no trace of the correspondinzisomer. Hydrazin-
olysis*® of the four acetyls provided aminotri@B, and then
coupling with S-acetyl-N-Boa-cysteiné® gave 14 in good
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yield and high isomeric purity. ThE-Boc protecting group
was removed by treatment d# with neat trifluoroacetic
acid, leading to ammonium sdlb, and then basification with
pyridine in the same pot gave the simplified mycothiol

cysteine-S-bimane product (s@eby fluorescence-detected
HPLC assay® Specific activities forl8 and 17 are 7500
and 14 200 nmol mint mg-protein?, respectively, establish-
ing 18 as a good substrate for this amidase. Neither the

analogue? as the result of a spontaneous and convenientinositol hydroxyls nor the glycosidic linking atom (O vs S)

intramolecular S-to-N acetyl migratich.

Evaluation of2 as a substrate fdvl. tuberculosianyco-
thiol S-conjugate amida&€'® was carried out by prefatory
S-alkylation with bromobimanel, Scheme 3) under mildly

Scheme 3. Preparation of Bimane Derivatives

OH
HO O
o) i CH 2 H&ﬁ
N p 3 tor2 O N CHz © HN R
HaC— N ‘ N4
& 20 mM Tris HCl  HaC™Xx S NHAC
3 g, (pH 8.0) CHj,

16 17: R=0-C4H{O4 (from 1)

18: R =8-CgHy (from 2)

basic conditiond® The resulting bimane derivative8 was
subjected to cleavage by the amidase in parallel with
mycothiol-bimanel7, while monitoring formation of the
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plays a major role in enzyme binding. An earlier sttiigd
indicated that the inositol ring is not required for reduction
of disulfides (see6) by the M. tuberculosismycothione
reductase. The accumulated information thus suggests that
2, which dispenses with the inositol hydroxyls and the linking
oxygen atom, can serve as a suitable foundation upon which
to base inhibitor design.
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